ЯДЕР ДЕЛЕНИЕ: ИСТОРИЧЕСКАЯ СПРАВКА - significado y definición. Qué es ЯДЕР ДЕЛЕНИЕ: ИСТОРИЧЕСКАЯ СПРАВКА
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es ЯДЕР ДЕЛЕНИЕ: ИСТОРИЧЕСКАЯ СПРАВКА - definición

Спонтанное деление ядер

ЯДЕР ДЕЛЕНИЕ: ИСТОРИЧЕСКАЯ СПРАВКА      
К статье ЯДЕР ДЕЛЕНИЕ
История открытия деления ядер берет начало с работы А.Беккереля (1852-1908). Исследуя в 1896 фосфоресценцию различных материалов, он обнаружил, что минералы, содержащие уран, самопроизвольно испускают излучение, вызывающее почернение фотопластинки даже если между минералом и пластинкой поместить непрозрачное твердое вещество. Различные экспериментаторы установили, что это излучение состоит из альфа-частиц (ядер гелия), бета-частиц (электронов) и гамма-квантов (жесткого электромагнитного излучения).
Первое превращение ядер, искусственно вызванное человеком, осуществил в 1919 Э.Резерфорд, который превратил азот в кислород, облучив азот альфа-частицами урана. Эта реакция сопровождалась поглощением энергии, поскольку масса ее продуктов - кислорода и водорода - превышает массу частиц, вступающих в реакцию, - азота и альфа-частиц. Выделение же ядерной энергии впервые удалось осуществить в 1932 Дж.Кокрофту и Э.Уолтону, бомбардировавшим литий протонами. В этой реакции масса вступавших в реакцию ядер была несколько больше массы продуктов, в результате чего и происходило выделение энергии.
В 1932 Дж.Чедвик открыл нейтрон - нейтральную частицу с массой, примерно равной массе ядра атома водорода. Физики всего мира занялись изучением свойств этой частицы. Предполагалось, что лишенный электрического заряда и не отталкиваемый положительно заряженным ядром нейтрон будет с большей вероятностью вызывать ядерные реакции. Более поздние результаты подтвердили эту догадку. В Риме Э.Ферми с сотрудниками подвергли облучению нейтронами почти все элементы периодической системы и наблюдали ядерные реакции с образованием новых изотопов. Доказательством образования новых изотопов служила "искусственная" радиоактивность в форме гамма и бета-излучений. См. также РАДИОАКТИВНОСТЬ
.
Первые указания на возможность деления ядер. Ферми принадлежит открытие многих нейтронных реакций, известных сегодня. В частности, он пытался получить элемент с порядковым номером 93 (нептуний), бомбардируя нейтронами уран (элемент с порядковым номером 92). При этом он регистрировал электроны, испускаемые в результате захвата нейтронов в предполагаемой реакции
238U + 1n . 239Np + ?-,
где 238U - изотоп урана-238, 1n - нейтрон, 239Np - нептуний и . . - электрон. Однако результаты оказались неоднозначными. Чтобы исключить возможность того, что регистрируемая радиоактивность принадлежит изотопам урана или другим элементам, расположенным в периодической системе перед ураном, пришлось проводить химический анализ радиоактивных элементов.
Результаты анализа показали, что неизвестным элементам соответствуют порядковые номера 93, 94, 95 и 96. Поэтому Ферми сделал вывод, что он получил трансурановые элементы. Однако О.Ган и Ф.Штрасман в Германии, проведя тщательный химический анализ, установили, что среди элементов, возникающих в результате облучения урана нейтронами, присутствует радиоактивный барий. Это означало, что, вероятно, часть ядер урана делится на два крупных осколка.
Подтверждение возможности деления. После этого Ферми, Дж.Даннинг и Дж.Пеграм из Колумбийского университета провели эксперименты, которые показали, что деление ядер действительно имеет место. Деление урана нейтронами было подтверждено методами пропорциональных счетчиков, камеры Вильсона, а также накопления осколков деления. Первый метод показал, что при приближении источника нейтронов к образцу урана испускаются импульсы большой энергии. В камере Вильсона было видно, что ядро урана, бомбардируемое нейтронами, расщепляется на два осколка. Последний метод позволил установить, что, как и предсказывала теория, осколки радиоактивны. Все это вместе взятое убедительно доказывало, что деление действительно происходит, и давало возможность уверенно судить об энергии, выделяющейся при делении. См. также ДЕТЕКТОРЫ ЧАСТИЦ
.
Поскольку допустимое отношение числа нейтронов к числу протонов в стабильных ядрах уменьшается с уменьшением размеров ядра, доля нейтронов у осколков должна быть меньше, чем у исходного ядра урана. Таким образом, были все основания предполагать, что процесс деления сопровождается испусканием нейтронов. Вскоре это было экспериментально подтверждено Ф. Жолио-Кюри и его сотрудниками: число нейтронов, испускаемых в процессе деления, было больше числа поглощенных нейтронов. Оказалось, что на один поглощенный нейтрон приходится приблизительно два с половиной новых нейтрона. Сразу стали очевидны возможность цепной реакции и перспективы создания исключительно мощного источника энергии и его использования в военных целях. После этого в ряде стран (особенно в Германии и США) в условиях глубокой секретности начались работы по созданию атомной бомбы.
Разработки в период Второй мировой войны. С 1940 по 1945 направление разработок определялось военными соображениями. В 1941 были получены небольшие количества плутония и установлен ряд ядерных параметров урана и плутония. В США важнейшие необходимые для этого производственные и научно-исследовательские предприятия были в ведении "Манхаттанского военно-инженерного округа", которому 13 августа 1942 был передан "Урановый проект". В Колумбийском университете (Нью-Йорк) группой сотрудников под руководством Э.Ферми и В.Цинна были проведены первые эксперименты, в которых изучалось размножение нейтронов в решетке из блоков диоксида урана и графита - атомном "котле". В январе 1942 эта работа была перенесена в Чикагский университет, где в июле 1942 были получены результаты, показывавшие возможность осуществления самоподдерживающейся цепной реакции. Первоначально реактор работал на мощности 0,5 Вт, но спустя 10 дней мощность была доведена до 200 Вт. Возможность получения больших количеств ядерной энергии была впервые продемонстрирована 16 июля 1945 при взрыве первой атомной бомбы на полигоне в Аламогордо (шт. Нью-Мексико).
Спонтанное деление         
Спонта́нное деле́ние — разновидность радиоактивного распада тяжёлых атомных ядер. Спонтанное деление является делением ядра, происходящим без внешнего возбуждения (вынужденного деления), и даёт такие же продукты, как и вынужденное деление: осколки (ядра более лёгких элементов) и несколько нейтронов.
Метрология историческая         

вспомогательная историческая дисциплина, предметом изучения которой являются применявшиеся и ещё применяемые в различных странах собственные единицы длины, площади, объёма, массы и др., системы единиц (мер), а также денежные единицы в их историческом развитии.

Задача М. и. - выяснение соотношений между единицами и их выражение в современных единицах (см., например, Английские меры), а также изучение происхождения названий единиц. М. и. необходима при изучении истории экономики и права, материальной культуры и контактов между народами, т.к. развитие систем единиц обусловлено ростом производительных сил и сопутствует расширению международных связей. С распространением метрической системы мер (См. Метрическая система мер) количество стран, использующих свои особые единицы, постепенно уменьшается, и в будущем задача М. и. сведется только к изучению вышедших из употребления единиц. Историю денежных единиц наряду с М. и. изучает Нумизматика.

Лит.: Петрушевский Ф. И., Общая метрология, ч. 1-2, СПБ, 1849; Бабенко И. П., Монеты, меры и весы всех стран и народов (в сравнении с русскими), СПБ, 1905; Черепнин Л. В., Русская метрология, М., 1944.

К. П. Широков.

Wikipedia

Спонтанное деление

Спонта́нное деле́ние — разновидность радиоактивного распада тяжёлых атомных ядер. Спонтанное деление является делением ядра, происходящим без внешнего возбуждения (вынужденного деления), и даёт такие же продукты, как и вынужденное деление: осколки (ядра более лёгких элементов) и несколько нейтронов. По современным представлениям, причиной спонтанного деления является туннельный эффект.

Вероятность спонтанного деления растёт с увеличением числа протонов в ядре. Эта вероятность зависит от параметра Z 2 / A , {\displaystyle Z^{2}/A,} где Z — число протонов, а A — общее число нуклонов. При приближении значения этого параметра к 45 вероятность спонтанного деления стремится к единице, что накладывает ограничения на возможность существования сверхтяжёлых ядер.

Для ядер таких элементов, как уран и торий, спонтанное деление является очень редким процессом; их ядра намного чаще распадаются по другим каналам распада (значение параметра Z2/A для ядер урана и тория порядка 35). С увеличением показателя Z2/A вероятность спонтанного деления ядер быстро растёт.

Явление спонтанного деления используется в методе радиоизотопного датирования возраста ископаемых остатков, метеоритов и т.д.

¿Qué es ЯДЕР ДЕЛЕНИЕ: ИСТОРИЧЕСКАЯ СПРАВКА? - significado y definición